The Frequent Subgraphs of the Connectome of the Human Brain
نویسندگان
چکیده
In mapping the human structural connectome, we are in a very fortunate situation: one can compute and compare graphs, describing the cerebral connections between the very same, anatomically identified small regions of the gray matter among hundreds of human subjects. The comparison of these graphs has led to numerous recent results, as the (i) discovery that women’s connectomes have deeper and richer connectivity-related graph parameters like those of men, or (ii) the description of more and less conservatively connected lobes and cerebral regions, and (iii) the discovery of the phenomenon of the Consensus Connectome Dynamics. Today one of the greatest challenges of brain science is the description and modeling of the circuitry of the human brain. For this goal, we need to identify sub-circuits that are present in almost all human subjects and those, which are much less frequent: the former sub-circuits most probably have functions with general importance, the latter sub-circuits are probably related to the individual variability of the brain structure and functions. The present contribution describes the frequent connected subgraphs (instead of sub-circuits) of at most 6 edges in the human brain. We analyze these frequent graphs and also examine sex differences in these graphs: we demonstrate numerous connected sub-graphs that are more frequent in female or the male connectome. While our results describe subgraphs, instead of sub-circuits, we need to note that all macroscopic sub-circuits correspond to an underlying connected subgraph. Our data source is the public release of the Human Connectome Project, and we are applying the data of 426 human subjects in this study.
منابع مشابه
Resting-state Functional Connectivity During Controlled Respiratory Cycles Using Functional Magnetic Resonance Imaging
Introduction: This study aimed to assess the effect of controlled mouth breathing during the resting state using functional magnetic resonance imaging (fMRI). Methods: Eleven subjects participated in this experiment in which the controlled “Nose” and “Mouth” breathings of 6 s respiratory cycle were performed with a visual cue at 3T MRI. Voxel-wise seed-to-voxel maps and whole-brain region of i...
متن کاملInsight into Disrupted Spatial Patterns of Human Connectome in Alzheimer's Disease via Subgraph Mining
Alzheimer’s disease (AD) is the most common cause of age-related dementia, which prominently affects the human connectome. In this paper, the authors focus on the question how they can identify disrupted spatial patterns of the human connectome in AD based on a data mining framework. Using diffusion tractography, the human connectomes for each individual subject were constructed based on two di...
متن کاملP128: Relationship of Childhood Brain Tumors and Hair Dye Usage During Pregnancy
Brain tumors, which is one of the destructive forms of human being’s cancers, are the second most common children’s cancers. Brain tumors may have an inherited (small percent), acquired reasons due to environmental factors. Nowadays advances in cosmetic industry have increased our ability in the field of youth and beauty. Hair dye products are such innovations. Recent studies showed...
متن کاملA five-year interval study of primary brain tumors in Alzahra Hospital in Esfahan
Background: About half of all brain tumors are primary, and the remainder are metastatic. Tumors of the nervous system have unique characteristics that set them apart from neoplastic processes elsewhere in the body. The World Health Organization (WHO) has classified central nervous system (CNS) tumors as grades I to IV in increasing order of malignancy. The goal of this study was to follow the...
متن کاملP 82: The Transplantation of Human Umbilical Cord Mesenchymal Stem Cells in Neonatal Strokes
Brain injuries that caused by strokes (result of intra partum ischemia) are a frequent cause of prenatal mortality and morbidity with limited therapeutic options. Transplanting human mesenchymal stem cells (hmscs) indicates improvement in hypoxic Ischemic brain injury (HIBD) by secretion growth factor stimulating repair processes (Hmscs) known as multi potent cells which isolated from bone marr...
متن کامل